
MA 335, Spring 2012

Extra Topics 2–3.
Bertrand’s Postulate

This assignment is due Tuesday May 1 (update: actually, Wednesday May 2).

This is a (quite long) extra assignment, worth twice as much as a regular home-
work in terms of course grade. It is not required to complete the course. If you
choose to do this assignment, the grade for it will only go to the numerator of your
grade.

Each problem in this set (with all sub-items) is worth 10 points. (But not
necessarily all problems have the same difficulty.) There are 130 points total, 105
points is considered 100%. If you go over 105 points, you will get over 100% for
this homework (up to 115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your
own paper and give credit to your collaborators in your pledge. Your solutions
should contain full proofs. Bare answers will not earn you much.

No extensions will be granted under any conditions. On the other hand, if you
choose to, you are welcome to submit problems in this assignment one-by-one or in
any combination.

All material necessary to do this assignment was covered before the Spring Break.

In this problem set we prove the following statement, known as Bertrand’s Pos-
tulate:
Theorem. For each integer n ≥ 2, there is at least one prime p s.t. n < p < 2n.
That is, between n and 2n there is always at least one prime.

This was conjectured by Joseph Louis François Bertrand in 1845 and proved
by Pafnuty Lvochich Chebyshev in 1850. Later (in 1932) Paul Erdős found easier
proof that we follow in the problems below.

General idea is that the binomial coefficient
(
2n
n

)
is divisible by each prime be-

tween n and 2n. With that in mind, we show that if there are no primes between
n and 2n for some sufficiently large n, then the binomial coefficient

(
2n
n

)
cannot be

as large as it should be. In fact, this “sufficiently large” condition will turn out to
be n > 2048 at worst, and we will establish the statement for n ≤ 2048 separately.

(1) (a) Prove that
(
2n
n

)
is the largest binomial coefficient among

(
2n
k

)
. (Hint:

using
(
m
k

)
= m(m−1)···(m−k+1)

k! , compare
(
2n
k

)
and

(
2n
k+1

)
.)

(b) Show the equality

4n = (1 + 1)2n =
2n∑
k=0

(
2n

k

)
,

then using item (a), conclude 4n ≤ (2n+ 1)
(
2n
n

)
.

In the problem above we showed that the binomial coefficient can be
estimated below:

(
2n
n

)
≥ 4n

2n+1 . In the rest of the problem set we show that
if Bertrand’s postulate fails, this lower bound is not met. Do do that, we
need to understand prime decomposition of

(
2n
n

)
.
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Recall that the integer part [x] is the greatest integer below or equal to
x, i.e. [x] = max{n ∈ Z | n ≤ x}. For example, [2] = 2, [π] = 3, [0.9999] =
0, [−0.7] = −1.

(2) (a) Prove that for each prime p and integer j ≥ 1, precisely
[

n
pj

]
numbers

from 1 to n are divisible by pj .
(b) Using item (a), show that the exponent of prime p in prime decompo-

sition of n! is[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ · · · =

∞∑
j=1

[
n

pj

]
.

(Note that the sum is actually finite because when pj > n, [n/pj ] = 0.)

Let R(n, p) denote the exponent of prime number p in the decomposition
of

(
2n
n

)
, so that

(∗)
(
2n

n

)
= p

R(n,p1)
1 p

R(n,p2)
2 · · · pR(n,pl)

l .

We will estimate this product above. To do that, we estimate each R(n, p).

(3) Using
(
2n
n

)
= (2n)!

n!n! and problem 2b, show that

(∗∗) R(n, p) =

∞∑
j=1

[
2n

pj

]
− 2

∞∑
j=1

[
n

pj

]
=

∞∑
j=1

([
2n

pj

]
− 2

[
n

pj

])
.

(4) (a) Prove that for any real number x, the value [2x]− 2[x] is either 0 or 1.
(Hint: Consider two cases: m ≤ x < m+0.5 and m+0.5 ≤ x < m+1,
m ∈ Z.)

(b) Prove that if j > ln 2n
ln p , then

[
2n
pj

]
= 0. Conclude the largest value of j

that has a chance of nonzero contribution to R(n, p) in (∗∗) is
[
ln 2n
ln p

]
.

(Hint: Take logarithm of the inequality 2n < pj .)
(c) Show that

R(n, p) =

∞∑
j=1

([
2n

pj

]
− 2

[
n

pj

])
≤

[
ln 2n

ln p

]
.

(Hint: Use (a) to estimate each term; use (b) to estimate how many
terms may be nonzero.)

Now that we estimated R(n, p), estimate pR(n,p).

(5) Prove that pR(n,p) ≤ 2n.

(Hint: pR(n,p) = exp(R(n, p) ln p). Use
[
ln 2n
ln p

]
≤ ln 2n

ln p .)

Now we estimate how large the primes pi in (∗) can be.



3

(6) (a) Prove that if p > 2n, then R(n, p) = 0.

(b) Prove that if n ≥ p > 2n
3 , then R(n, p) = 0. (Hint: p2 >

(
2n
3

)2
> n

for all n ≥ 3 (case n = 2 is trivial anyway), so the only possible nonzero term
in (∗∗) is the first one. Check that the first term is 2− 2 · 1.)

(c) Similarly to (b), show that if 2n
3 > p ≥

√
2n, then R(n, p) ≤ 1. (Hint:

Use problem 4a.)

Assume that Bertrand’s postulate fails for some n. Combining this as-
sumption with the problem above, we get that all primes p that occur in(
2n
n

)
are either p ≤

√
2n or

√
2n < p ≤ 2n

3 . Indeed,
• primes p > 2n are forbidden by problem 6a,
• p = 2n is not a prime,
• primes n < p < 2n do not exist by assumption,
• primes 2n/3 < p ≤ n are forbidden by 6b.

According to this, we can write the prime decomposition of
(
2n
n

)
:

(#)

(
2n

n

)
=

∏
p≤

√
2n

pR(n,p) ·
∏

√
2n<p≤ 2n

3

pR(n,p),

where the products above are taken over primes p.

(7) Prove that (
2n

n

)
≤ (2n)

√
2n

∏
√
2n<p≤ 2n

3

p.

(Hint: In (#), estimate the first product using problem 5, and the second
product using problem 6c.)

We are almost there. Our current goal is to show that
(
2n
n

)
is too small.

Looking at the formula above we see that we need to put an upper bound
on the product of primes ≤ 2n/3.

We show by induction that for every m ≥ 2,

(##)
∏
p≤m

p ≤ 4m.

(8) (a) Verify base of induction m = 2 and m = 3.
(b) Assume that the statement is true for all m ≤ 2k − 1, k ≥ 2, prove

that it’s also true for m = 2k. (Hint: m = 2k is not prime for k ≥ 2.)

Case m = 2k is a bit trickier. We need an auxiliary statement:

(9) (a) Prove that each prime p such that k + 2 ≤ p ≤ 2k + 1 divides
(
2k+1

k

)
.

(b) Prove that
(
2k+1

k

)
≤ 22k. (Hint: Write 22k+1 = (1+1)2k+1 and expand

brackets. Use
(
2k+1

k

)
=

(
2k+1
k+1

)
.)

(10) Assume that (##) is true for all m ≤ 2k. Prove that it’s also true for
m = 2k + 1. Write∏

p≤2k+1

p =
∏

p≤k+1

p ·
∏

k+2≤p≤2k+1

p,

estimate the first product using induction hypothesis and the second prod-
uct using problem 9. This finishes proof of (##).
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Combining problem 7 and inequality (##), we have(
2n

n

)
≤ (2n)

√
2n

∏
√
2n<p≤ 2n

3

p ≤

≤ (2n)
√
2n

∏
p≤ 2n

3

p ≤

≤ (2n)
√
2n42n/3.

Finally, recall that we have a lower bound for
(
2n
n

)
in the problem 1b, so

we get
4n

2n+ 1
≤

(
2n

n

)
≤ (2n)

√
2n42n/3.

But. . . this inequality is impossible for sufficiently large n: the left hand
side grows faster than any (4 − ε)n, and the right hand side grows slower
than any (42/3 + ε)n, so at some point the inequality breaks.

(11) [This problem is optional because it involves either some calculus skills or
some basic programming.] Find n0 such that the inequality

(♡)
4n

2n+ 1
≤ (2n)

√
2n42n/3.

is impossible for n ≥ n0. You either can do computer-aided computation
(which yields n0 = 468), or you can take logarithm of both sides and do
some arithmetic (which yields n0 = 2048 if you do rough estimates).

Recall that the inequality (♡) was obtained assuming that Bertrand’s
postulate fails for some n, so the fact that the inequality is impossible proves
Bertrand’s postulate for n ≥ n0. The only thing that’s left to check is that
it holds for n < n0, which is a straightforward matter:

(12) Suppose p1 < p2 < . . . < pk are primes such that p2 < 2p1, p3 < 2p2 and
so on: pi+1 < 2pi, 1 ≤ i ≤ k. Prove that then Bertrand’s postulate holds
for any n between p1/2 < n < pk.

(13) Verify that 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503 are primes that sat-
isfy the condition above. Conclude that Bertrand’s postulate holds for any
2 ≤ n ≤ 2502.

Some final remarks. The original Chebyshev’s proof is often called analytical,
but in fact at its core it’s about as combinatorial as this one. The main difference
is that it uses A(n) = lcm(1, 2, 3, . . . , 2n − 1, 2n) instead of

(
2n
n

)
. (Note that A(n)

has the same property: each prime n < p < 2n appears exactly once in A(n).)
This leads to an argument with fewer shortcuts, but on the upside, allows to easily
modify proof to obtain statements like “for each n ≥ 100, there are at least 10
primes between n and 2n”, or like “for each n ≥ 2, there is at least one prime
between n and 1.5n”.

It is also worth mentioning that Bertrand’s postulate has a number of nice con-
sequences, which I may cover later in extra topics or in lectures.


